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Abstract 

In a previous work [Phys. Rev. B43(1991)9262], the binding energies of hydrogenic 
and nonhydrogenic on-axis donors in GaAs/Ga 1 _xAlxAs quantum-well wires of circular 
cross section have been calculated as functions of the radius of the quantum-well wire. 
In both the hydrogenic and northydrogenic cases, a variational trial wave function was 
chosen that could be written as the product of an "envelope function", and a function 
containing the variational parameter. It was assumed in these calculations that the 
potential barrier that exists at the surface of the GaAs cylinder and the surrounding 
Ga I _xAlxAs matrix is infinite. For the envelope function, an ordinary Bessel function 
of the first kind and of order zero was chosen. This envelope function satisfies the 
boundary condition, the vanishing of the trial function at the surface of the quantum- 
well wire. The question arises: how sensitive are the calculated binding energies to the 
choice of the envelope function? In the present work, we attempt to provide a partial 
answer to this question by choosing another envelope function, a spherical Bessel 
function of order zero. This function also satisfies the boundary condition and makes 
the trial wave function vanish at the interface between the GaAs cylinder and the 
Ga l _ ~AlxAs matrix. Our calculations show that the binding energies of both the hydrogenic 
and the nonhydrogenic on-axis donors depend on the choice of the envelope function. 

1. Introduction 

In recent years, great advances were made in crystal-growth techniques, such 
as molecular-beam epitaxy [1] (MBE), liquid phase epitaxy [2] (LPE), and metal- 
organic chemical vapor deposition [3] (MOCVD). These advances made it possible 
to fabricate new semiconductor structures of lower dimensionality which are associated 
with exciting new properties. Among the new structures are the quasi two-dimensional 
quantum well (QW), the quasi one-dimensional quantum-well wire (QWW), and the 
quasi zero-dimensional quantum dot (QD). These hetero structures, exhibiting sharp 
interfaces, are associated with quantum confinement effects and have been the 
subject of extensive theoretical and experimental investigations. 

An example of the quasi two-dimensional structure is a GaAs layer sandwiched 
between two thick slabs of Gal_xAlxAS. This structure is called a quantum well 
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(QW), since the (x-dependent) discrepancy between the band gaps in the two 
semiconductors effectively confines a free electron to the GaAs layer. An example 
of the quasi one-dimensional structure is a GaAs wire of circular, rectangular, or 
triangular cross section, embedded in a Gal _xAlxAs matrix. This structure is called 
a quantum-well wire (QWW) and, for reasons mentioned above, in this structure, 
too, a free electron is effectively confined to the GaAs wire. An example of the 
quasi zero-dimensional structure is the quantum dot (QD), a GaAs sphere (or box) 
embedded in a Ga~ _xAl~As matrix. It is this structure where quantum confinement 
effects are the most severe. 

The nature of the energy levels of impurities in a QW, or in a QWW, is of 
interest. Bastard [4] has calculated, by a variational approach, the binding energy 
of a hydrogenic donor in a Gal _xAl~As/GaAs/Ga~ _xAl~As QW of infinite depth 
and found that the binding energy of the donor increases as the width of the QW 
decreases. The assumption of infinite depth for the QW was relaxed later by Green 
and Bajaj [5], who considered a hydrogenic donor in a QW of finite depth, with 
the depth depending on the x-value of the surrounding Gal_xAlxAS slabs. These 
authors have found that, as the width of the QW is reduced, the binding energy of 
the donor at first increases then, at a certain QW width, it starts to decrease. A 
nonhydrogenic donor in a Gal _ ~AI~As/GaAs/Gal_ xA1,As QW has been considered 
by Csavinszky and Elabsy [6,71, both for infinite [6], and for finite [7] QW depths. 
In their calculations, the static dielectric constant of GaAs used in the hydrogenic 
model is replaced either by the spatial dielectric function of Resta [8], or that of 
Cornolti and Resta [9]. Their approach, leading to the spatial dielectric function in 
a numerical form, has been reformulated by Csavinszky and Brownstein [10, 11], 
resulting in analytical expressions for the spatial dielectric function. 

The binding energy of an on-axis hydrogenic donor in a GaAs/Ga~ _~AI~As 
QWW of circular cross section has been calculated by Lee and Spector [12], and 
by Brown and Spector [13], using a variational approach. In the first of these 
calculations [12], it was assumed that the potential barrier that confines a free 
electron to the QWW is infinite, while in the second of these calculations [13], both 
infinite and finite potential barriers have been considered. Lee and Spector [12] 
have found that, for an infinite potential barrier between the GaAs cylinder and the 
Gal _ xAlxAs matrix, the binding energy increases as the radius of the QWW decreases. 
This finding is similar to that obtained by Bastard [4] for a hydrogenic donor in a 
Gal_~AlxAs/GaAs/Gal_xAlxAs QW. Brown and Spector [13], and Bryant [14], 
who also discussed hydrogenic on-axis donor states in a GaAs/Gal _xA1,As QWW 
of circular cross section by a variational approach, have found that, for a finite 
potential barrier, as the radius of the QWW is reduced, the binding energy of the 
donor at first increases then, at a certain QWW radius, it starts to decrease. In the 
work of Lee and Spector [12], a variational wave function was used that does not 
satisfy the boundary condition, namely the vanishing of the wave function at the 
surface of the QWW. Lee and Spector [12], however, have suggested a wave 
function that does satisfy the boundary condition at the surface of the QWW. This 
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is the function that has later been used by Brown and Spector [13]. In a previous 
work [15], we have used their suggested trial wave function in variational calculations 
of the binding energies of on-axis hydrogenic and nonhydrogenic donors as a 
function of the radius of a GaAs/Gal _xAlxAs QWW of circular cross section. Our 
calculations for hydrogenic donors confirm the results of Brown and Spector [13]. 
In our previous work [15], we have also discussed the screening of the donor ion 
by the valence electrons of GaAs and calculated [15], again by a variational approach, 
the binding energy of a nonhydrogenic on-axis donor as a function of the radius of 
the GaAs/Gal_xAl~As QWW. 

In the present work, we raise the question of just how sensitive are the 
calculated [15] hydrogenic and nonhydrogenic binding energies of on-axis donors 
to the choice of the envelope function. We attempt to provide a partial answer to 
this question by choosing another envelope function, a spherical Bessel function of 
order zero. This function, too, satisfies the boundary condition, the vanishing 
of the trial wave function at the surface of the QWW. Our calculations show that 
the binding energies of both hydrogenic and nonhydrogenic on-axis donors in a 
GaAs/Gal _~AI~As QWW of circular cross section do depend on the choice of the 
envelope function. 

In what follows, atomic units [16] will be used. 

2. Theory 

2.1. HYDROGENIC MODEL, WITH Jo FOR THE ENVELOPE FUNCTION 

For an on-axis hydrogenic donor, the Hamiltonian, in circular cylindrical 
coordinates, is given [15] by 

Hh l V2 _ 1 = +VB, (1) 
2m* e(0)[Z2 + D2] 1/2 

where m* = 0.0665mo is the effective mass [17] of an electron (of mass m0) at the 
bottom of the conduction band of GaAs, e(0) = 12.56 is the static dielectric constant 
[17] of bulk GaAs, while VB is the potential barrier which confines a free electron 
to the GaAs wire. In what follows, it will be assumed that VB is such that it vanishes 
for p < a and is infinite for p > a, where a is the radius of the QWW. In eq. (1), 
the coordinate p measures the distance perpendicular to the axis of the QWW, and 
the coordinate z measures the distance along the axis of the QWW. Both p and z 
have their origin at the (point) donor ion. 

The trial wave function for an on-axis donor, suggested by Lee and 
Spector [12], is given by 

1,ttl ( p, z) = N 1Jo(klo p)e -t~lCt¢ + z211/2, (2) 
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where N1 is the normalization constant and /31 is a variational parameter. The 
quantity Jo(&o P) is a Bessel function [18] of the first kind of order zero, with 
argument kip P. The quantity kl0 is related to the first zero [19] of the Bessel 
function Jo(klo P). The numerical value of this quantity is [19] kip = 2 . 4 0 4 8 . . . / a .  

When, for a given QWW radius a, the expectation value of H h is calculated 
with gt 1, the z-integration can be done analytically but the p-integration can only 
be done numerically. The expectation value can be expressed by 

(Hh)l = (T)I + (Vh)l, (3) 

where (T)I and (Vh)1 are the expectation values of the kinetic and potential energies, 
defined in eq. (1). Detailed expressions for these expectation values are given 
below: 

/32 a2  
(T)I 2m* + 2m*'  a -  kip (4a) 

and 
a 

f pJo(ap)2Ko(2/31 p)dp 
(Vh)l = 1 o (4b) 

e(O) f p2Jo(ap)2K1 (2/31p)dp 
o 

The normalization constant N1 is given by 

i 1-1 2 N 1 = 4re p2Jo(o~p)2K 1 (2/3 l p ) d p j  , (5) 

where K1 is a modified Bessel function [17] of order one, with argument 2/31 p. 
The binding energy of an on-axis hydrogenic donor is obtained [12] from the 

expression 

0~2 h 
E~I = 2m* (H)l ,min (6) 

Our values for the binding energy Ebb1, as a function of the radius a of the GaAs/ 
Gal_xAlxAs QWW, are shown in the third column of table 1, while the second 
column of table 1 displays the values of the variational parameter/31 at which (Hh)l 
attains its minimum. It is the finding of (Hh)l,rnin that requires extensive numerical 
integrations. 
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Table 1 

Binding energy E~, 1 of an on-axis hydrogenic donor, and binding energy 
E~ of an on-axis nonhydrogenic donor, as functions of the radius a of the 
QWW. Values of the optimal values of the variational parameters/3 and fl] 
for the hydrogenic and nonhydrogenic cases, respectively, are also listed. 

Hydrogenic donor Nonhydrogenic donor 

a fll x 10 -2 E~I (a, 131) fll x 10 -2 E~(a,/31) 
[a.u.] [a.u.] -1 [meV] [a.u.] -1 [meV] 

5.0 1.963 158.51 3.219 343.73 

10.0 1.556 118.55 1.918 147.44 

20.0 1.207 73.63 1.306 81.07 

30.0 1.035 57.48 1.080 60.38 

40.0 0.926 47.96 0.953 49.45 

50.0 0.852 41.55 0.868 42.45 

60.0 0.792 36.91 0.806 37.50 

70.0 0.747 33.35 0.757 33.77 

80.0 0.710 30.53 0.719 30.84 

90.0 0.680 28.22 0.687 28.46 

100.0 0.654 26.30 0.660 26.49 

120.0 0.613 23.27 0,618 23.40 

140.0 0.582 20.98 0.585 21.08 

160.0 0.557 19.18 0.560 19.25 

180.0 0.537 17.73 0.539 17.76 

200.0 0.521 16.52 0.523 16.55 

300.0 0.474 12.67 0.574 12.68 

400.0 0.456 10.59 0.456 10.59 

500.0 0.452 9.30 0.452 9.31 

600.0 0.456 8.45 0.456 8.45 

700.0 0.463 7.85 0.464 7.86 

800.0 0.472 7.43 0.473 7.43 

2.2. 

where 

NONHYDROGENIC MODEL, WITH Jo FOR THE ENVELOPE FUNCTION 

In the nonhydrogenic model, eq. (1) is replaced by 

Hnh= 1 V2 - 1 +VB, 
2m* e(r)[z2 + p2] I/2 

1+(  1 ~) 
e ( r )  - e(O) - e(O---~) e-~l~' 

(7) 

(8) 
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is an expression suggested by Hermanson [20], and recently used by Oliveira and 
Falicov [21]. It is seen from eq. (8) that, as r --> O, e.(r) ---> 1. It is also seen from 
eq. (8) that, as r ---) oo, e(r) ---) e(0). This limiting behavior of  e(r) is expected on 
the basis of  general physical considerations. 

In eq. (8), c denotes a screening constant that we have determined by requiring 
that, in the screening region of  Resta [8], e(r) should agree as well as possible with 
the spatial dielectric function of Resta [8]. We have found that this requirement is 
well satisfied with c = 0.8. 

After some calculations, we find that the expectation value of  the potential 
energy is 

d 

f PJo (2fl] p) dp ( ap )2Ko  

(vnh)l _ 1 0 
C(0) a 

J p2Jo(o:p)2K l (2,3~ p)dp 
o 

e (o ) -  1 

e(o) 

a 

fPJo (aP)ZKo [(2,3] + 1/c)p] dp 
0 

¢2 

f p 2 J o  ( a p ) 2 K  1 (2,3] p)dp 
0 

(9) 

where fl] is the variational parameter that replaces ,31 in eq. (2). In eq. (9), K o and 
K1 are modified Bessel functions [17] of orders zero and one, with argument 
(2,3] + 1/c)p and 2,3] 19, respectively. The normalization constant N] is given by 
eq. (5) with 131 replaced by ,3]. 

The binding energies E~hl obtained from 

Eg h -  0~2 (H nh)l ,rain , (10) 
2m* 

and the minimizing values of the variational parameter fl~, as functions of  the radius 
a of the QWW, are presented in the fifth and fourth columns of  table 1. 

2.3. HYDROGENIC MODEL, WITH Jo FOR THE ENVELOPE FUNCTION 

For this case, the trial wave function, for an on-axis donor, is chosen as 

~2( I 9, z) = N2 Jo(,up)e-~t~ + z211/2, (1 1) 

where N 2 is a normalization constant and 132 is a variational parameter. The quantity 
Jo(,UP) is a spherical Bessel function of order zero [17] with argument u p  and 
,U = n~r/a, n = 1, 2, 3 . . . . .  For the present case, n = 1. 
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When, for a given QWW radius a, the expectation value of H h is calculated 
with eq. (11), the result can be expressed by 

<Hh>2 = <T>2 + (vh>2, (12) 

where (T)2 and (Vh)2 are the expectation values of the kinetic and potential energies, 
defined in eq. (1). Detailed expressions for the expectation values are given below: 

and 

where 

( r ) 2  - 

+ 

2;¢f12 N 2 
m *  

o 

P Jo (# P) 2K 1 (2fl2 P) dp 

a 

2rcN2 f m* J°(pp)2K 

0 

1 (2 f l2p)dp  

a 

2  m 2m. f 
0 

4z fl2pN 2 
m *  

P Jo (#p)no (#p)K 1 (2fl2 p) dp 

2 ~#2 N 2 

m *  

Q 

f p2jo (#p)no (#p)Ko (2fl2p)dp 
0 

4~N 2 
(vh)2 = 

e(o) 

no(#p) = 

a 

f PJo (#P) 2K 1 (2fl2 p) dp 

0 

a 

- -  f pjo(pp)ZKo(2fl2p)dp, 
0 

cos(gp) 

#P 

(13) 

(14) 

( 1 5 )  

is a spherical Neumann function [17] of order zero with argument pp. 
The normalization constant N 2 is given by 

N 2 = 4~ p2jo(pp)2Kl(2fl2p)dp 
0 

(16) 
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The binding energies E~2 obtained from 

O~ 2 
E h 2 -  2m* (Hh)z'min' (17) 

and the minimizing values of the variational parameter/32, as functions of the radius 
a of the QWW, are presented in the third and second columns of table 2. 

Table 2 

Binding energy E~2 of an on-axis hydrogenic donor, and binding energy E~  
of an on-axis nonhydrogenic donor, as functions of the radius a of the 
QWW. Values of the optimal values of the variational parameters/~ and/3~ 
for the hydrogenic and nonhydrogenic cases, respectively, are also listed. 

Hydrogenic donor Nonhydrogenic donor 

a /32 x 10 -2 Ehb2 (a, /32) /3~ x 10 -2 E~(a,/39 
[a.u.] [a.u.] -1 [meV] [a.u.] -1 [meV] 

20.0 6,026 1911.55 6,356 1969.64 

30.0 5.602 1015.40 5.754 1016.61 

40.0 5.217 618.37 5.306 619.17 

50,0 4,910 418.02 4.970 418.43 

60.0 4,656 302.99 4.697 303.26 

70.0 4,446 230.89 4.473 231.09 

80.0 4.257 182.68 4.277 182.82 

90.0 4.091 148.80 4,116 148,91 

100.0 3,957 121.04 3.975 124.16 

120.0 3.728 90.95 3.740 91,01 

140.0 3.539 70.35 3.550 70.39 

160.0 3.386 56.60 3,90 56.63 

180.0 3.252 46.93 3.260 46.96 

200,0 3.1 44 39.84 3.150 39.86 

300.0 2,767 22.03 2,770 22.04 

400.0 2.551 15.08 2,555 15.08 

500.0 2.423 11.53 2.425 11.53 

600.0 2.341 9.52 2.340 9,41 

700.0 2.288 7.90 2,290 8,03 

800.0 2,257 7.06 2.260 7.06 

2.4. NONHYDROGENIC MODEL, Jo FOR THE ENVELOPE FUNCTION 

Using eq. (11) to evaluate the expectation value ofeq. (7), with the consideration 
of eq. (8), the result may be expressed by 
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= / v n h \  <Hnh>2 (T>2 + \ /2, (18) 

where (T)2 and (vnh>2 are expectation values of the kinetic and potential energies, 
defined in eqs. (7) and (8). The detailed expression for the expectation value (v~h) 2 
is given by 

r /  

(vnh>2 = 47rN~Z[e(0) - 1] 
- e(O) ~ p j o ( u p ) Z K o  [(2fl~ + 1/c)p]dp. (19) 

o 

The normalization constant N~ is given by replacing /3 2 by fl~ in eq. (16). 
The binding energies Eg~ obtained from 

E~2 h - O~2 (H nh\ (20) 
2m * /2,min' 

and the minimizing values of the variational parameter fl~, as functions of the 
radius a of the QWW, are presented in the fifth and fourth columns of table 2. 

3. Discussion 

It is seen from table 1 that both the hydrogenic and the nonhydrogenic 
binding energies of on-axis donors are sensitive functions of the QWW radius a 
and, for infinite barrier height, increase without limit as the wire radius a decreases. 
This is in agreement with the hydrogenic results of Lee and Spector [12], and of 
Brown and Spector [13], who have also used a trial wave function with one variational 
parameter. It should be mentioned, however, that Brown and Spector [13] and 
Bryant [14] have found that, for finite barrier height, the hydrogenic binding energy 
first increases and then decreases as the radius a of the QWW decreases. 

Table 1 also reveals that the screening of the donor ion by the spatial dielectric 
function, displayed in eq. (8), begins to be important only for a < 80 a.u. Finally, 
it is also seen from table 1 that the binding energies, in all cases considered, tend 
towards the bulk value (5.77 meV) as the radius of the QWW becomes "very large" 
(800 a.u.). 

It is seen from table 2 that both the hydrogenic and the nonhydrogenic 
binding energies are sensitive functions of the QWW radius a and, for infinite 
barrier height, increase without limit as the wire radius a decreases. This finding, 
based on calculations with the envelope function J0, parallels that obtained by 
calculations with the envelope function Jo- 

A cross comparison of table 1 with table 2, however, shows that E~2 increases 
faster with decreasing wire radius a than E~I. The cross comparison of table 1 with 
table 2 also shows that the same trend is valid when Eb~ is compared with Ebb. 

Here, it is also mentioned that, in the calculations of refs. [12-15] and in the 
present work, the nonparabolicity of the GaAs conduction band is not considered. 
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This effect, for an on-center hydrogenic donor in a Gal _xAlxAs/GaAs/Gal _xAlxAS 
QW of finite depth has been considered by Chaudhuri and Bajaj [22]. The 
effect of nonparabolicity for an off-center hydrogenic donor in a Ga~_~Al~As/ 
GaAs/Gal_ ~AI~As QW has been investigated by Csavinszky and Elabsy [23]. None 
of the calculations for donors in a QWW considers image charges. For a 
hydrogenic donor in a Gal_xAlxAs/GaAs/Ga1_~Al~As QW, this effect has been 
considered by Mailhiot et al. [24]. 

Finally, it should be mentioned that binding energies of impurities have also 
been calculated for a QWW of noncircular cross section. The case of rectangular 
and square cross sections have been considered by Weber et al. [25], Brum [26], 
and Os6rio et al. [27]. 
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